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conditions may be related to the more than US$ 150 million invested by CONAF and
private companies in wild�re control [ 20]. In this case, intensive �re suppression efforts in
recent years are preventing large increases in area burned (in most years) that would be
expected with warmer temperatures [35].

Our analysis of broad-scale surface and atmospheric conditions associated with ac-
tive/inactive �re months supports previous work [ 10,13,14,58] but provides more detail
on the complexity of these synoptic mechanisms. Importantly, a comparison of large �res
from the earlier period (1984–1996) with large �res in recent decades (1997–2018) suggests
the relationship between atmospheric and surface conditions may be shifting as the inter-
action between factors that drive �re activity (fuel availability, continuity and condition,
�re weather and ignitions) have changed. In the earlier period (1984–1996), large �res
were associated with relatively cool surface conditions. While similarly associated with
anticyclonic anomalies, a weakening of westerly winds and clear, dry conditions, �res
that occurred during the latter period of the time series (1997–2018), however, are more
strongly associated with warm temperatures and more robust adiabatic warming linked to
a weakening of westerly winds and a strengthening of offshore easterly winds. This shift
from large �res occurring during cool, dry conditions in the early period to large �re occur-
rence during warm conditions in recent decades may signal that (as suggested by Figure
7) the lower troposphere `ventilation' that normally cooled the region may be weakening,
enhancing warm adiabatic easterly offshore winds that can promote �re spread, especially
when fuels are strongly preconditioned for burning following warm and dry conditions.

Novel to our understanding of climate-�re interactions in the region, our results show
that inactive months during the �re season were related to negative SAM. This suggests
that negative SAM was the most important broad-scale teleconnection in�uencing variation
in monthly area burned across the study. In contrast to previous studies [ 6,10], our analyses
do not show clear relationships between SAM and active �re months or ENSO and active
or inactive �re months (Supplementary S2: Figure S5a–c, lack of support for hypothesis
H3). These �ndings are likely a result of the different factors that drive large �re activity
in the drier Mediterranean vegetation of the northern districts versus the wetter, fuel-rich
temperate forest ecosystems of the southern districts. Summer months in the northern
districts (north of the B ½o B½o district; ca. 36� S) are almost always warm and dry, resulting
in a low correlation between temperature and burned area. Instead, antecedent rainy
conditions (variability between warm/wet and cool/dry winters) play a key fuel-buildup
role in the northern Mediterranean districts versus the fuel-rich temperate forests in the
southern districts which experience larger �res during anomalously warm/dry summers
and extended droughts.

Although not reported here, we also examined seasonal relationships (DJF) between
the climate modes (i.e., SAM and ENSO) and active and inactive burned area for northern
and southern districts separately. In northern districts we found that active �re activity
was linked to both antecedent positive ENSO (2-yr prior) and concurrent positive SAM
(year of the �re) conditions. In Central Chile antecedent positive ENSO is a driver of
wet conditions, whereas positive SAM is associated with dry conditions [ 25]; thus, in the
northern Mediterranean bioclimatic region the former leads �ne-fuel build up and the
former cures them [ 6]. Also in agreement with Holz et al. [ 6], in southern districts active
�re activity was linked to the dry and �re-prone positive SAM phase and when ENSO
was not important. Inactive �re months in northern districts were not linked to ENSO
but instead to antecedent positive SAM, which is associated with warm conditions. The
relationship between warm surface conditions and large �res is likely weak in Chilean
Mediterranean vegetation because large �res are more strongly related to antecedent fuel
growing rather than warming (warm temperatures are predominant in Mediterranean
systems) [52]. By contrast, clear and ecologically-meaningful links between inactive �re
months and �re-season ENSO or SAM were mostly absent in the southern temperate region
of our study area. While the nature and strength of the relationship between broad-scale
teleconnections and active/inactive �re months varies across the northern to southern
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regions of our study area, we expect that interannual variability associated with these
teleconnections will continue to in�uence the occurrence of large �res through fuel growing
and drying in the northern Mediterranean vegetation and enhancing long-term warming
and drying trends in the temperate vegetation of south-central Chile.

Importantly, the upper and surface atmospheric conditions (e.g., weakened westerlies-
induced warming) that can promote active �re months, and that appear to occur several
times per �re season, are projected to become more common in south-central Chilean
districts in the coming decades [14,53]. Climate models are largely in agreement that
temperatures will continue to warm 3–4 � C by 2100 across central Chile [14,54]. Concurrent
with projections for warming temperatures, a long-term shift in the position of Hadley
cells which directs storms entrained by southern westerly winds poleward, is expected to
continue to promote long-term drought conditions in south-central Chile [ 25,55], under a
heavy emission scenario [14,56]. When coupled with fuel drying resulting from persistent
drought conditions and warm surface temperatures, easterly (dry) winds and the reduced
westerly �ow of cool air will likely provide the ingredients for large con�agrations to
become more frequent in south-central Chile, especially where woody biomass is abundant
and well connected (i.e., Maule, B½o B½o, Araucan½a, Los R½os) [6,10].

5. Conclusions

Our evaluation of broad-scale atmospheric and surface conditions indicate speci�c
climatic patterns are associated with the most active �re months. Results suggest active
�re months are associated with:

� The persistence of anticyclonic anomalies (high pressure systems) located over the
southeast Paci�c Ocean off southern Chile.

� Warm surface conditions (maximum temperature) throughout a large area (ca. 34–45� S)
of south-central Chile.

� Easterly surface wind anomalies linked to reduced onshore westerly ventilation of
cooler oceanic winds to the south-central Chilean land-surface.

� At broader spatial scales, a circumpolar chain of high-pressure systems at subtropical
latitudes and low pressure around the Antarctic periphery (i.e., patterns associated
with positive SAM).

Our results highlight the need to better understand how broad-scale atmospheric
and surface conditions will interact with and overlay on longer-term trends in the climate
system to in�uence future �re activity in south-central Chile. Our results also draw
attention to potential shifts in the relationship between simple, aggregated indices of climate
(e.g., seasonal average of maximum temperature) and area burned, which suggest climate–
fuel linkages are changing, such that temperature may become increasingly important in
driving large �res despite potential increases in precipitation. Additionally, the relatively
low area burned in 2019 despite conditions conducive for large �res underscores the
potentially strong role of human in�uence and management—both in the propagation
of wild�re ignition and its subsequent controls—and patterns of human activity and
management that may be changing as fast as climate.

The potentially strong impact of human activity on large �re occurrence is notewor-
thy, highlighting the complex relationship between wild�re management, land use and
demographic change on the spread of large �res in south-central Chile. Fire ignitions in
south-central Chile are almost all attributed to human activities, yet increasing land-use
change (urbanization and cultivation) and strong �re suppression efforts can potentially, as
evidenced by the 2019–2020 �re season, reduce the occurrence of large �res [20]. However,
intensive water use can exacerbate drought conditions in some areas, further promot-
ing large �res [ 57]. Increases in the extent of highly �ammable eucalypt and pine forest
plantations have also been shown to promote large �res by replacing more structurally
heterogeneous and discontinuous native forests with structurally and compositionally
homogeneous and contiguous vegetation [15,17,57,58].



Fire 2021, 4, 28 15 of 18

Hence, human activity in south-central Chile can either promote �re activity, through
additional ignitions and changes in land-use that increase landscape �ammability (e.g.,
expansion of pine and eucalypt plantations, increased water use), or inhibit �re activity
through increased suppression effectiveness and land-use activities that result in fragmenta-
tion of fuels. These human–wild�re interactions make it dif�cult to anticipate the extent to
which management can mitigate the climate conditions conducive to large �res described
in our analyses. As documented elsewhere, it is likely that increased �re suppression
efforts will be most effective in reducing the occurrence of large �res in years with low
to moderate �re weather [ 59–61]. In years with extreme �re weather, especially during
anomalously warm and high surface winds, it is unlikely that �re suppression efforts will
be able to contain �res that escape initial attacks [ 61]. This will be particularly true for
the homogeneous pine and eucalyptus plantations and the fuel-rich southern districts of
our study area during years of extreme fuel drying, that when combined with ignitions,
promote rapid �re spread. What is certain is that short-term atmospheric and surface
conditions conducive to �re spread will overlay and interact with longer-term trends in
climatic variability and land-use trends to further increase �re risk and hazard in the fuel-
rich temperature forests of south-central Chile. And as has been shown in dry temperate
forests elsewhere, warmer annual and seasonal temperatures may increasingly override
potential increases in precipitation leading to long-term increases in evapotranspiration
promoting fuel drying and �re spread.

Further clarifying the trends and mechanisms governing persistent patterns in the
strength and position of high-pressure systems, surface temperature and easterly wind
anomalies will help managers and communities anticipate when conditions are ripe for pro-
moting large and hazardous wild�res in south-central Chile—wild�res that management
efforts may not be able to control. Future research is needed to evaluate the causes and
consequences of easterly wind anomalies linked to reduced onshore `ventilation' of cooler
oceanic winds to the land surface and to determine if this trend is strengthening under
large-scale climatic changes such as projections for the long-term poleward shift of South-
ern Hemisphere westerly winds under a warming climate [ 55,62,63]. Of critical importance
is understanding how short temporal scale (days to weeks to months) atmospheric and
surface conditions associated with �re weather will be superimposed on these longer-term
trends that are increasingly preconditioning historically less �ammable, fuel-rich regions
of south-central Chile to burn.
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ENSO and SAM anomalies, Figure S6: Difference in atmospheric subsidence between active and
inactive �re months. Table S1: Fire season monthly area burned summary.
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